THE CHEMICAL COMPOSITION
OF THE DUFOR GLAND CONTENTS OF WORKERS
OF THE ANT FORMICA CUNICULARIA
A TEST FOR RECOGNITION OF THE SPECIES

by

J. P. J. BILLEN (1), (4), J. K. A. VAN BOVEN (4),
R. P. EVERSHEID (1), (4) and E. D. MORGAN (4)
(1) Limburgs Universitair Centrum, dept. SBM,
Universitaire Campus, B - 3610 Diepenbeek (Belgium)
(2) Laboratorium voor Systematiek en Ecologie,
Naamsestraat 59, B - 3000 Leuven (Belgium)
(3) Department of Chemistry, University of Keele,
Staffordshire, ST5 5BG (England)

Key words: Ants, Dufour gland, Formica cunicularia, Formica rufibarbis, Hydro-
carbons, Chemical taxonomy.

SUMMARY

The Dufour glands of workers of Formica cunicularia contain, on average, 8.4 µg
of a relatively simple mixture of linear hydrocarbons. n-Undecane (6.7 µg, 80 % of total)
is the dominant component. None of the oxygenated compounds observed in a number
of other Formicinae were detected in this species. F. cunicularia LATREILLE and
F. rufibarbis FABRICIUS, two taxonomically very similar species can be distinguished
very easily by the chemical differences in their Dufour gland compounds.

INTRODUCTION

Slavery in ants has been reported for at least eight genera (Busching et al., 1980). In the Formicidae, Formica sanguinea LATREILLE and Polyrurus rufescens
(Nylander) raid nests of species of the Formica fusca Linnaeus group including
F. cunicularia LATREILLE and F. rufibarbis FABRICIUS. Both F. cunicularia and
F. rufibarbis have a very similar distribution and somewhat similar habitats in
Europe and occasionally local populations or individual workers with a similar colour
pattern may be hard to distinguish at some sites. Following the separation clues in
taxonomic handbooks, F. rufibarbis should display a higher degree of pubescence
(rufus + barba, Latin : bearing red hairs), while in F. cunicularia the gaster should
be more greyish (cuniculus, Latin : rabbit) (Kutter, 1977; Van Boven, 1977;
Collingwood, 1979).

From recent studies of the glandular secretions of a broad sample of ant species
in many laboratories (for a review, see Blum and Hermann, 1978) it is apparent

(*) Present address : Organic Geochemistry Unit, School of Chemistry, The Uni-
versity, Bristol (England).
that many of these secretions have a species-specific composition (Bergström and Løfqvist, 1968, 1970, 1972, 1973; Longhurst et al., 1980; Cammaerts et al., 1981a, b; Evershed and Morgan, 1981). In particular, the Dufour gland, which is found in close association with the sting of females and worker castes of all Hymenoptera, has been investigated chemically in a large number of species of Formicidae, and often consists of mixtures of simple aliphatic and terpenoid compounds.

In this paper we report the results of a chemical study of the volatile constituents of the Dufour gland of F. cunicularia. The chemistry of the gland of this species is compared with that of F. rufibarbis (Bergström and Løfqvist, 1968). The chemical differences are much more distinct between the two species than the taxonomic differences and provide a simple way to distinguish them.

MATERIALS AND METHODS

Source of insect material

Workers of F. cunicularia were collected in the nature reserve « Het LEUDAL » near Roermond in the Netherlands. The taxonomic determination of this species was confirmed by ecological research in this area by one of us, extending over 40 years, taking into account the evolution of the local distribution pattern of this species and also by comparison with previously collected samples of both F. cunicularia and F. rufibarbis.

Sampling preparation

Workers were killed by momentary immersion in liquid nitrogen taking care not to alarm them beforehand. The Dufour gland was removed by gently pulling off the abdominal tip. The whole gland, free of haemolymph and supported on a fragment of glass, was sealed in a small soda glass vial and introduced into the gas chromatograph using a solid sampling technique (Morgan and Wadhams, 1972).

Gas chromatography (GC)

A Pye 104 series gas chromatograph fitted with flame ionisation detectors was employed throughout these investigations. Two types of GC column were used:

1) 10% PEGA coated on Diatomite M (100-120 mesh, acid washed and treated with hexamethyldisilazane AW-HMDS) packed in a 3 m x 4 mm internal diameter glass column.

2) 5% OV-101 silicone coated on chromosorb W (100-120 mesh, AW-HMDS) packed in a 1.5 m x 4 mm internal diameter glass column.

The GC oven temperature was programmed, except when comparing retention times or plotting log of retention time (t_R) against the number of carbon atoms per molecule. Under these circumstances isothermal analyses were performed.

Quantification of the glandular components was performed by comparing the areas of the GC peaks obtained from the analysis of single glands with those of known amounts of a standard hydrocarbon.

Gas Chromatography — Mass Spectrometry (GC-MS)

GC-MS studies were performed on a Pye 104 series GC with FID linked to an AEI MS12 mass spectrometer through a jet separator. The spectra were obtained
through the solid injection of 3 worker Dufour glands onto the PEGA column (1). The helium carrier gas flow rate was maintained at 15 ml/min while the GC oven temperature was programmed from 80-160° C at 5°/min and then held at 160° C. Identifications were made by interpretation of the fragmentation pattern and by comparison with reference spectra.

RESULTS

The Dufour gland secretion of *F. cunicularia* workers is composed largely of linear alkyl hydrocarbons in the C₉-C₁₈ chain length range. Figure 1 shows a GC profile typical of that obtained through the solid injection of a single Dufour gland.

![Gas chromatography trace](image)

Fig. 1. — Gas chromatography trace of the contents of a single Dufour gland from a worker of *Formica cunicularia*. The gland was sealed in a glass capillary, which was heated in the chromatograph and then crushed, at time 0. For identification of all the numbered components, see Table 1. Compound 1 is nonane and 3 is undecane. Chromatographic conditions: temperature programme from 95° C to 170° C at 4° C/min, on a 10 % PEGA column (column 1) with nitrogen flow of 60 ml/min.

Components 1, 2, 3, 5, 6, 8, 9, 10 and 12 were found to correspond exactly in retention time (t_R) on polar and non-polar GC phases to C₉-C₁₈ n-alkanes.

Plots of log t_R against the number of carbon atoms in the chain on both GC phases suggested that the remaining components, 5, 7 and 11 are the simple alkenes, undecene, tridecene and heptadecene.

The identities of all except the four minor hydrocarbon components were confirmed by linked GC-MS. The alkenes belong to the linear series, but the position of the double bond was not determined. By comparison with the corresponding fatty acids and the substances found in Dufour glands of other ants, they are probably cis-5-tridecene, cis-8-heptadecene and 1- or 3-undecene.
The quantity of these substances contained in the gland was calculated from ten replicate analyses of single worker’s Dufour glands. These results are summarised in Table 1 together with the analytical evidence for identification. Clearly, the predominant glandular component is n-undecane (6.7 μg, 80 %), the next most abundant alkane is n-nonane (0.85 μg, 10 %) while the most abundant alkene is tridecene (50 ng, 0.6 %).

TABLE 1

Composition of the contents of the Dufour gland of *Formica cunicularia*, determined by gas chromatography

<table>
<thead>
<tr>
<th>Number in Fig. 1</th>
<th>Compound</th>
<th>% ± SD</th>
<th>Mean Quantity (ng ± SD) (n = 10)</th>
<th>Evidence (*)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>n-Nonane</td>
<td>10.13 ± 6.04</td>
<td>850 ± 580</td>
<td>MS, GC</td>
</tr>
<tr>
<td>2</td>
<td>n-Decane</td>
<td>1.75 ± 0.74</td>
<td>150 ± 90</td>
<td>MS, GC</td>
</tr>
<tr>
<td>3</td>
<td>n-Undecane</td>
<td>79.46 ± 4.74</td>
<td>6730 ± 2410</td>
<td>MS, GC</td>
</tr>
<tr>
<td>4</td>
<td>Undecene</td>
<td>0.43 ± 0.15</td>
<td>40 ± 20</td>
<td>GC</td>
</tr>
<tr>
<td>5</td>
<td>n-Dodecane</td>
<td>0.27 ± 0.09</td>
<td>20 ± 10</td>
<td>MS, GC</td>
</tr>
<tr>
<td>6</td>
<td>n-Tridecane</td>
<td>5.51 ± 2.66</td>
<td>430 ± 200</td>
<td>MS, GC</td>
</tr>
<tr>
<td>7</td>
<td>Tridecene</td>
<td>0.59 ± 0.27</td>
<td>50 ± 30</td>
<td>MS, GC</td>
</tr>
<tr>
<td>8</td>
<td>n-Tetradecane</td>
<td>trace (+)</td>
<td>trace (+)</td>
<td>GC</td>
</tr>
<tr>
<td>9</td>
<td>n-Pentadecane</td>
<td>1.27 ± 0.62</td>
<td>60 ± 60</td>
<td>MS, GC</td>
</tr>
<tr>
<td>10</td>
<td>n-Heptadecane</td>
<td>0.47 ± 0.17</td>
<td>40 ± 30</td>
<td>MS, GC</td>
</tr>
<tr>
<td>11</td>
<td>Heptadecene</td>
<td>trace (+)</td>
<td>trace (+)</td>
<td>GC</td>
</tr>
<tr>
<td>12</td>
<td>n-Octadecane</td>
<td>trace (+)</td>
<td>trace (+)</td>
<td>GC</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td></td>
<td>8430 ± 2920</td>
<td></td>
</tr>
</tbody>
</table>

(*) MS, identity confirmed by mass spectrometry.

GC, indicates that the substance has the same retention time as standard samples on both polar and non-polar GC phases. Position of the double bonds not determined.

(+) Trace, less than 10 ng (i.e. < 0.1 %) per ant.

The standard deviations have been calculated for both the percentages and absolute quantities of each component for ten workers. The values given in Table 1 reveal that while the variation in the absolute amounts of the individual components is quite large, the overall composition from worker to worker is fairly constant especially with respect to the major components.

The ten workers examined during the course of this study were found to contain on average 8.43 μg of hydrocarbons, with some of the workers containing over 10 μg of material.

At no time in these analyses were any oxygenated compounds observed. Analyses were performed specifically to look for decyl, undecyl and dodecyl acetates, which are present in *F. rufibarbis* (Bergström and Lörqvist, 1968) but none were
detected. Fig. 1 can be conveniently compared with Fig. 6 in Bergström and Löfqvist (op. cit.),

DISCUSSION

The Dufour gland in formicine ants is known to produce a wide variety of simple organic compounds. In the wood ants (subgenus Formica) over 30 substances were found in the worker’s Dufour gland while in Camponotus more than 40 compounds were found (Bergström and Löfqvist, 1972, 1973). Lasius workers, on the other hand, have been found to contain less than 15 compounds (Bergström and Löfqvist, 1970). The slave-making species Formica sanguinea and Polyergus rufescens and the slaves Formica fusca and F. rufibarbis contain only 15 compounds (Bergström and Löfqvist, 1968).

While some of the above species produce complex mixtures of substances including hydrocarbons, alcohols, ketones and acetates the focus of the present study, *F. cunicularia*, has been found to produce a relatively simple mixture of n-alkanes and alkenes.

Although the general pattern of the Dufour gland substances can be considered as species-specific, the differences in the compositions between closely related species are often restricted to subtle quantitative variations.

Thus colonies of *F. cunicularia* in Belgium, Denmark and South-east England often have workers with a distinctly reddish alitrunk and some in addition may have one or more pairs of bristles on the promesonotal dorsum. By contrast *F. rufibarbis* may sometimes have colonies of quite dark workers and in some individuals, irrespective of colour, the characteristic bristles on the pronotum may be reduced or abraded while in others the diagnostic setae on the dorsal surface of the scale may also be hard to find. The reddish *cunicularia* were formerly called *F. glebaria* var. *rubescens* Forel, which together with the greyish *F. glebaria* Nylander constitute the present *F. cunicularia* Latreille.

It is the experience of one of us that both *F. rufibarbis* and *F. cunicularia* used to occur together at the collection site of "Het LEUDAL", but today *F. rufibarbis* has been completely displaced, so no comparison could be made for the two species from the same area.

In an earlier investigation of the odour similarities between *Formica* ants and their slaves, Bergström and Löfqvist (1968) showed the Dufour gland secretion of *F. rufibarbis* to be composed mainly of C₉-C₁₃ hydrocarbons. However, significant amounts of oxygenated components were also present, including n-decyl acetate, n-undecyl acetate, n-dodecyl acetate and 2-tridecanone.

In contrast to the aforementioned indefinite morphological features, the chemical analyses of the Dufour gland contents of the two species reveal a distinct species-specific pattern showing considerable differences. The most conspicuous feature in *F. cunicularia* is the complete absence of the less volatile decyl, undecyl and dodecyl acetates, whereas in *F. rufibarbis* these compounds are significant constituents of the Dufour gland. Moreover, *F. cunicularia* contains no tridecanone but has a tridecane peak, while in *F. rufibarbis* 2-tridecanone was identified but no tridecane was found (Bergström and Löfqvist, 1968).

The volatile compounds stored in the glands, such as the mandibular and Dufour glands of ants, frequently have a pheromonal function (for a review, see Parry and Morgan, 1979). No ethological studies have yet been made on the Dufour gland
secretion of *F. cucullaria*. The hydrocarbons probably participate with the formic acid from the venom gland, in the alarm-defence system of the species, frequently suggested for others of the Formicinæ (Wilson and Regnier, 1971). The Dufour gland secretion (hydrocarbons and alkyl acetates) of slave-making ants such as *F. sanguinea*, may be discharged during slaving raids to panic and disorganize the potential slaves (Regnier and Wilson, 1971). For this language to be effective, the chemical language of both slaves and slave-makers must incorporate common substances, and their concentration in the blend should also be critical for the ethological response they provoke. The presence of *n*-alkyl acetates in the Dufour gland of *F. fusca* and *F. rufibarbis* is compatible with this idea (Bergström and Löfqvist, 1968), but these acetates are absent from *F. cucullaria*, so we must tentatively conclude that *F. cucullaria* are responding to the hydrocarbon part of the slave-makers secretion.

It is also suggested that the Dufour gland secretion acts as a wetting and spreading agent for the formic acid from the venom gland, aiding its penetration through the cuticle of arthropod prey. In this sense, therefore, the Dufour gland secretion has no pheromonal function (Löfqvist, 1977). This question is best resolved by careful observational experiments with the secretion and its pure components.

Regardless of these questions, the GC analysis of the Dufour secretion of *F. cucullaria* offers a clear chemical taxonomic test to distinguish it from its close relative *F. rufibarbis*.

This analysis has been carried out on only one colony of *F. cucullaria*, but from several years work with *Myrmica* ants at Keele, we have found that colonies of a given species, taken at different times and in different areas, and even from the British Isles and adjacent continent contain the same substances and (within certain limits) in the same proportions. We (and we hope, others) will check these results as and when further colonies of *F. rufibarbis* and *F. cucullaria* become available.

ACKNOWLEDGEMENTS

J. P. J. Billen thanks the Belgian National Fund for Scientific Research for the award of a research assistantship and R. P. Evershed thanks the S.R.C. and Rothamsted Experimental Station for support through a CASE award. We also thank C. A. Collingwood for helpful criticisms and for reading the manuscript.

REFERENCES

Bergström, G. and J. Löfqvist (1972) — Similarities between the Dufour gland secretions of the Ants *Camponotus ligniperda* (Latr.) and *Camponotus herculaneus* (L.) (Hym.). *Ent. Scand.*, 3, 225-238.

Blum, M. S. and H. R. Hermann (1978) — Venom and venom apparatuses of the Formicidae: Myrmecinae, Ponerinae, Dorylinae, Pseudomyrmecinae, Myrmicinae and

